Constatação experimental da pressão no seio de um líquido Varias experiências evidenciam a pressão suporta... Pressione TAB e depois F para ouvir o conteúdo principal desta tela. Para pular essa leitura pressione TAB e depois F. Para pausar a leitura pressione D (primeira tecla à esquerda do F), para continuar pressione G (primeira tecla à direita do F). Para ir ao menu principal pressione a tecla J e depois F. Pressione F para ouvir essa instrução novamente.
Título do artigo:

Pressão em um Líquido

94

por:

Constatação experimental da pressão no seio de um líquido

Varias experiências evidenciam a pressão suportada por ume superfície mergulhada no seio de um líquido em equilíbrio Dentre elas citaremos apenas e experiência realizada com a cápsula manométrica. A cápsula manométrica consta essencialmente de uma caixa dotada de uma membrana elástica . A caixa é ligada a um tubo em forma de U por meio de um condutor flexível.

 

b_337_136_16777215_01_images_stories_fisica_pressao_liquido_01.gif

 Nos ramos do tubo em U colocamos um líquido colorido. Pelo desnível do liquido nos ramos do tubo analisamos a pressão exercida sobre a membrana elástica da capsula. 

Inicialmente o líquido alcança o mesmo nível em ambos os ramos do tubo como se vê na figura. Isto se dá porque a pressão exercida na superfície livre do liquido contido no ramo esquerdo é a mesma pressão exercida sobre a superfície da membrana; esta pressão é a pressão atmosférica.

Se você introduzir e cápsula no seio de um líquido em equilíbrio contido num recipiente, notará que se estabelece um desnível nos ramos do tubo em U, fato que comprova a existência de uma força imposta pelo líquido na superfície de membrana, ou seja, comprova a existência de pressão que o líquido exerce sobre a membrana da cápsula A força exercida pelo líquido é perpendicular à superfície da membrana, pois caso contrário a componente tangencial dessa força arrastaria a cápsula, o que não ocorre na prática. 

À medida que você aprofunda a cápsula no líquido o desnível no tubo em U aumenta, mostrando que a pressão exercida pelo líquido cresce com a profundidade. Num mesmo ponto, no seio do líquido, você pode girar a capsula à vontade sem acarretar alteração no desnível nos ramos do tubo em U, significando este fato que a pressão independe da orientação da superfície da membrana elástica da cápsula.

A pressão exercida pelo líquido na membrana da cápsula a dita pressão hidrostática. Se à pressão hidrostática adicionarmos a pressão exercida pela atmosfera sobreposta ao líquido teremos a chamada pressão absoluta .

 Do que ficou dito até o momento, você conclui que no seio de um líquido a uma dada profundidade a pressão é igual em todos os pontos. Em outras palavras se considerarmos um plano paralelo à superfície do líquido a pressão será a mesma em todos os pontos deste plano. Dados agora dois pontos A e B, localizados em diferentes profundidades, no seio do líquido, qual será a diferença de pressão de um ponto para outro? A resposta a essa pergunta á dada peio Principio de Stevin que passamos a enunciar. 

Principio fundamental da Hidrostática ( Princípio de Stevin)

"A diferença entre as pressões em dois pontos considerados no seio de um líquido em equilíbrio (pressão no ponto mais profundo e a pressão no ponto menos profundo) vale o produto da massa especifica do líquido pelo módulo da aceleração da gravidade do local onde é feita a observação, pela diferença entre as profundidades consideradas."

b_256_163_16777215_01_images_stories_fisica_pressao_liquido_02.gif 

Simbolicamente:

pa - pb = dgh 

A partir do Teorema de Stevin podemos concluir :

  • A pressão aumenta com a profundidade. Para pontos situados na superfície livre, a pressão correspondente é igual à exercida pelo gás ou ar sobre ela. Se a superfície livre estiver ao ar atmosférico, a pressão correspondente será a pressão atmosférica, patm .

 Na figura abaixo tem-se o gráfico da pressão p em função da profundidade h.

 

b_303_172_16777215_01_images_stories_fisica_pressao_liquido_04.gif

 

  • Pontos situados em um mesmo líquido e em uma mesma horizontal ficam submetidos à mesma pressão;
  • A superfície livre dos líquidos em equilíbrio é horizontal.

Exemplo:

Temos um mergulhador estacionado a 10 m de profundidade. No mesmo nível em que se encontra existe uma gruta que encerra ar. Calcule a pressão a que se acham submetidos o mergulhador e o ar da gruta. Considere:


dágua = 1.000 kg/m3

g = 10 m/s2

patm = 105 N/m2.